Ecriture des définitions des limites

- 1) a) Montrer, en revenant aux définitions, que la suite $(u_n)_{n\in\mathbb{N}}$ donnée par $u_n=\frac{1}{n^2+1}$ tend vers 0.
 - b) Montrer, en revenant aux définitions, que la suite $(v_n)_{n\in\mathbb{N}}$ donnée par $v_n=\frac{1}{2^n}$ tend vers 0.
 - c) Montrer, en revenant aux définitions, que la suite $(w_n)_{n\in\mathbb{N}}$ donnée par $w_n = \sqrt[4]{n^5+2}$ tend vers $+\infty$.
- d) Montrer, en revenant aux définitions, que la suite $(x_n)_{n\in\mathbb{N}}$ donnée par $x_n=2\pi$. $\cos(n^2+1)-(n^2+1)\cos(2\pi)$ tend vers $-\infty$.
- 2) a) Montrer, en revenant aux définitions, que la suite $(u_n)_{n\in\mathbb{N}}$ donnée par $u_n=1+\frac{1}{3}+\ldots+\frac{1}{3^n}=\sum_{k=0}^n\frac{1}{3^k}$ tend vers 1,5.
 - b) Montrer, en revenant aux définitions, que la suite $(u_n)_{n\in\mathbb{N}}$ donnée par $u_n = \sqrt[n]{n}$ tend vers 1.
- 3) a) Montrer, en revenant aux définitions, que si la suite $(u_n)_{n\in\mathbb{N}}$ tend vers $\ell\in\mathbb{R}$, alors $(u_n^2+u_n)_{n\in\mathbb{N}}$ tend vers $\ell^2+\ell$.
- b) Montrer, en revenant aux définitions, que si la suite de réels positifs $(u_n)_{n\in\mathbb{N}}$ tend vers $\ell\in\mathbb{R}_+\cup\{+\infty\}$, alors $(\sqrt{u_n})_{n\in\mathbb{N}}$ tend vers $\sqrt{\ell}$ (avec la convention $\sqrt{+\infty}=+\infty$).

Etudes de cas numériques simples

4) Etudier convergence et limite éventuelle des suites dont le terme général est donné par les formules :

a)
$$u_n = \sin(n\frac{\pi}{3})$$
; b) $v_n = 3^n - 2^n$; c) $w_n = \frac{n^2}{n+1} - n$; d) $x_n = \frac{\sin(n)}{n}$; e) $y_n = \frac{n!}{n!+n}$;
f) $z_n = \frac{n! - (n-2)!}{1 + n^2 \cdot n!}$; g) $a_n = \frac{2^n + 7^n}{6^n + 4^n}$; h) $b_n = 3^n + (-2)^n$; i) $c_n = 2^n + (-3)^n$; j) $d_n = \sqrt{n+3} - \sqrt{n}$.
k) $e_n = \sqrt{n + \alpha\sqrt{n}} - \sqrt{n}$, $\alpha \in \mathbb{R}^+$ étant fixé; ℓ) $f_n = \frac{\beta \cdot n^2 + \gamma \cdot n + \delta}{n^2 + \sqrt{n}}$, β, γ, δ étant des réels fixés.

- 5) La suite $(u_n)_{n\in\mathbb{N}}$ telle que $\forall n\in\mathbb{N}, u_n=n^2-n^3$ est-elle majoré ? minorée ? Même question pour $(v_n)_{n\in\mathbb{N}}$ telle que $\forall n\in\mathbb{N}, u_n=(-1)^n n$.
- 6) (a) On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=\sqrt{2}$ et par la relation de récurrence : $\forall n, u_{n+1}=3-u_n$. Calculer u_n directement en fonction de n, et étudier le comportement de la suite quand n tend vers $+\infty$.
- (b) On considère la suite $(v_n)_{n\in\mathbb{N}}$ définie par $v_0=-1$ et par la relation de récurrence : $\forall n, u_{n+1}=2+\frac{1}{2}u_n$. Montrer que la suite de terme général (v_n-4) est géométrique. Calculer v_n directement en fonction de n, et étudier le comportement de la suite quand n tend vers $+\infty$.
- (c) On considère la suite $(w_n)_{n\in\mathbb{N}}$ définie par $w_0=0$ et par la relation de récurrence : $\forall n, w_{n+1}=1+2w_n$. Montrer que la suite de terme général $(1+w_n)$ est géométrique. Calculer w_n directement en fonction de n, et étudier le comportement de la suite quand n tend vers $+\infty$.
- (d) On reprend la formule de récurrence du (c) mais on change le premier terme. Que se passe-t-il si on part de $w_0 = 7$? Et $w_0 = -1$? Et $w_0 = -2$?
- (e) On considère la suite $(x_n)_{n\in\mathbb{N}}$ définie par $x_0=1$ et par la relation de récurrence : $\forall n, x_{n+1}=3-2x_n$. Montrer que la suite de terme général (x_n-1) est géométrique. Calculer x_n directement en fonction de n, et étudier le comportement de la suite quand n tend vers $+\infty$.

Cas numériques plus complexes

- 7) On considère trois réels $a \neq 1$, et b, u_0 quelconques. Et on définit $(u_n)_{n \in \mathbb{N}}$ en posant : $\forall n \in \mathbb{N}, u_{n+1} = a.u_n + b.$
 - a) Montrer que l'équation ax + b = x a une unique solution x_0 .
 - b) Montrer que la suite de terme général $u_n x_0$ est géométrique.
- c) Donner le terme général u_n de la suite en fonction de n, et discuter le comportement à l'infini et la limite éventuelle de la suite en fonction des paramètres de départ.
 - d) Quand a = 1, que devient cette étude?

- 8) On considère la suite définie par les conditions : (i) $u_0 = 1$; (ii) $\forall n, u_{n+1} = \frac{3u_n + 4}{2u_n + 3}$

 - (a) On suppose la suite convergente, de limite ℓ . Montrer qu'on a $\ell = \sqrt{2}$. (b) Montrer que, pour tout n, on a : $u_{n+1} \sqrt{2} = \frac{(u_n \sqrt{2})(3 2\sqrt{2})}{(2u_n + 3)\sqrt{2}}$.
 - (c) Déduire du (b) que : $\forall n, |u_{n+1} \sqrt{2}| \le \frac{1}{10}|u_n \sqrt{2}|$. (On pourra montrer que : $\frac{3 2\sqrt{2}}{2} < \frac{1}{10}$).
 - (d) Prouver que $\lim_{n \to +\infty} u_n = \sqrt{2}$.
- (e) Prouver qu'on a : $\forall n, |u_n \sqrt{2}| < 10^{-n}$. En déduire des approximations rationnelles de $\sqrt{2}$ à 0,01 ou 0,001 près. Est-on sûr des 2 ou 3 premiers chiffres?
- 9) On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par les premiers termes $u_0=1,u_1=1$ et par la relation de récurrence : $\forall n, u_{n+2} = u_{n+1} + u_n$ (suite de Fibonacci).
 - (a) Calculer les 10 premiers termes de la suite.
- (b) Montrer que cette suite a des termes u_n strictement positifs, qu'elle est strictement croissante à partir du rang 1 et tend vers $+\infty$.
- (c) On cherche les suites géométriques $(g_n)_{n\in\mathbb{N}}$ vérifiant pour tout $n:g_{n+2}=g_{n+1}+g_n$. Montrer qu'une telle suite est soit nulle, soit de raison r non nul tel que : $r^2 = r + 1$.
 - (d) Résoudre l'équation $r^2 = r + 1$. On montrera qu'elle a une racine $\phi > 0$ et une racine $\phi' < 0$.
 - (e) Montrer que le système d'équations suivant à une unique solution $(x,y) \in \mathbb{R}^2$ qu'on calculera.

- (g) Montrer qu'on peut aussi écrire $\forall n, u_n = E[(\frac{\sqrt{5}+1}{2})^n].$

Suites monotones, suites adjacentes

- 10) On pose $u_0 = 2$, et $\forall n \geq 0, u_{n+1} = \frac{2u_n + 3}{u_n + 2}$. Montrer que la suite est décroissante et convergente, et trouver sa limite (on pourra commencer par montrer, par récurrence sur n, qu'on $a: \forall n, u_n^2 > 3$).
- 11) On pose, pour tout $n \ge 1$, $u_n = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{n \times (n+1)} = \sum_{k=1}^{n} \frac{1}{k(k+1)}$.
 - a) Montrer que $\forall n \in \mathbb{N}^*, u_n = 1 \frac{1}{n+1}$.
 - b) Soit $\alpha \geq 2$ un réel, on pose : $\forall n \geq 1, v_n = 1 + \frac{1}{2^{\alpha}} + \ldots + \frac{1}{n^{\alpha}} = \sum_{k=1}^{n} \frac{1}{k^{\alpha}}$. Montrer que : $\forall n \geq 2, v_n \leq 1 + u_{n-1}$.
 - c) Montrer, en utilisant le b), que la suite $(v_n)_{n\in\mathbb{N}}$ est croissante et majorée, et convergente.
- 12) On pose pour tout $n: u_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} = \sum_{k=0}^{n} \frac{1}{k!}$, et $v_n = u_n + \frac{1}{n \cdot n!}$.
 - (a) Montrer que les suites u et v sont adjacentes, et convergent.
 - (b) Montrer que leur limite est un nombre irrationnel.
 - (c) Donner une approximation de la limite à 10^{-2} près, par défaut (il s'agit en fait du nombre e).
- 12) On pose pour $n \ge 1$: $u_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} = \sum_{i=1}^{n} \frac{1}{k}$.
 - a) Montrer: $\forall n \geq 1, u_{2n} u_n > \frac{1}{2}$

 - b) Montrer: $\forall n \geq 0, u_{2^n} > \frac{n}{2}$. c) Prouver que $\lim_{n \to +\infty} u_n = +\infty$.

- 14) Soit la suite $(u_n)_{n \in \mathbb{N}^*}$ définie par : $\forall n \geq 1, u_n = 1 \frac{1}{2} + \frac{1}{3} \dots + \frac{(-1)^{n-1}}{n} = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$. Montrer que les suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont adjacentes et en déduire que $(u_n)_{n\in\mathbb{N}^*}$ converge
- 15) On pose, pour tout $n \in \mathbb{N}$, $u_n = \frac{\sin(1)}{1} + \frac{\sin(2)}{2} + \dots + \frac{\sin(n+1)}{2^n} = \sum_{k=0}^n \frac{\sin(k+1)}{2^k}$.
 - a) On se donne deux entiers $n, p \ge 0$. Prouver qu'on a : $|u_n u_{n+p}| \le \frac{1}{2^n} \left(\frac{1 \frac{1}{2^p}}{1 \frac{1}{3}}\right)$.
- b) Montrer que pour tout $\varepsilon > 0$, il existe une rang N tel que : $\forall n, m \geq N, |u_n u_m| < \varepsilon$. (Indication : on pourra prouver que, pour tout N, on a : $\forall n, m, [n, m \ge N \Rightarrow |u_n - u_m| < \frac{1}{2^{N-1}}]$)
 - c) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente.
- 16) On considère la suite définie par la récurrence : $u_0 = 2, \forall n \ge 0, u_{n+1} = \sqrt{u_n^2 + 1}$.
 - a) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.
 - b) Montrer que $\lim_{n \to +\infty} u_n = +\infty$.
 - c) Répondre aux mêmes questions avec la suite définie par : $v_0 = 1, \forall n \geq 0, v_{n+1} = v_n + \frac{1}{n}$.
- 17) Montrer que la suite définie par $u_0 = 1$, et $\forall n \geq 0, u_{n+1} = \sqrt{u_n + 2}$ est croissante et majorée par 2. Montrer qu'elle converge et calculer sa limite.
- 18) [plus dur...] On pose $u_n = \sqrt{1 + \sqrt{2 + \sqrt{3 + \sqrt{... + \sqrt{n}}}}}$. Montrer que cette suite est convergente.

Problèmes plus théoriques

- 19) a) Montrer que si $(u_n)_{n\in\mathbb{N}}$ tend vers $\ell\in\mathbb{R}\cup\{-\infty,+\infty\}$, alors $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ tendent aussi vers ℓ .
 - b) Montrer que si les suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ tendent vers ℓ , alors $\lim_{n\to+\infty}u_n=\ell$.
 - c) Montrer qu'il existe $(u_n)_{n\in\mathbb{N}}$ non convergente telle que $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ soient convergentes.
- 20) Soit $(u_n)_{n\in\mathbb{N}}$ une suite quelconque. Les conditions énoncées en a) ou en b) impliquent-elle que u converge?
 - a) Les suites $(u_{3n})_{n\in\mathbb{N}}$, $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont convergentes.
 - b) Les suites $(u_{2n})_{n\in\mathbb{N}}$, $(u_{3n})_{n\in\mathbb{N}}$ et $(u_{3n+1})_{n\in\mathbb{N}}$ sont convergentes.
- 21) On considère une suite $(u_n)_{n\in\mathbb{N}}$ telle que $\lim_{n\to+\infty}u_n=\ell$ avec $\ell\in\mathbb{R}$. Pour tout n on pose $v_n=\frac{u_0+u_1+\ldots+u_n}{n+1}$ a) Soit $\varepsilon>0$ fixé pour les questions a), b) et c). Montrer qu'il existe un réel A fixe et un entier N_0 tels que, si $n\geq N_0$, on ait : $(1-\frac{N_0}{n})(\ell-\frac{\varepsilon}{2})+\frac{A}{n}< v_n<(1-\frac{N_0}{n})(\ell+\frac{\varepsilon}{2})+\frac{A}{n}$.
 - b) Quelles sont les limites des suites $\left((1-\frac{N_0}{n})(\ell-\frac{\varepsilon}{2})+\frac{A}{n}\right)_{n\geq N_0}$ et $\left((1-\frac{N_0}{n})(\ell+\frac{\varepsilon}{2})+\frac{A}{n}\right)_{n\geq N_0}$? c) Montrer qu'on peut trouver un rang $N\geq N_0$ tel que, si $n\geq N$, on a : $\ell-\varepsilon < v_n < \ell+\varepsilon$.

 - d) Quelle est la limite de la suite v?
 - e) Le résultat reste-t-il valable si on part d'une suite u tendant vers $+\infty$?
- f) Montrer qu'il existe des suites u non convergentes telles que v converge vers un réel. Montrer qu'on peut même prendre des suites non bornées.

On suppose connue l'écriture en base dix des nombres entiers naturels :

Si $N \in \mathbb{N}^*$, il existe un unique $d \in \mathbb{N}$ tel que $10^d \le N < 10^{d+1}$, et une unique suite $a_0, a_1, ..., a_d$ vérifiant : (i) $\forall k \in \{0, ..., d\}, a_k \in \{0, 1, ..., 9\}$; (ii) $N = a_d.10^d + a_{d-1}.10^{d-1} + + a_1.10 + a_0$. On a alors $a_d \ne 0$.

- 22) On se donne un réel $x \in [0, 1[$. Pour tout $n \ge 1$, on pose $C_n = E(10^n x)$, et $x_n = \frac{C_n}{10^n}$.
 - (a) Montrer qu'on a : $\forall n \leq 1, 0 \geq x x_n < \frac{1}{10^n}$. Quelle est la limite de x_n quand n tend vers $+\infty$? (b) Montrer que $10.C_n \leq C_{n+1} < 10(C_n + 1)$. En déduire qu'il existe une <u>unique</u> suite d'entiers $(c_n)_{n \geq 1}$
- vérifiant les conditions :
 - (i) $\forall n \geq 1, c_n \in \{0, 1, ..., 9\}$; (ii) $\forall n \geq 1, \frac{c_1}{10} + \frac{c_2}{10^2} + ... + \frac{c_n}{10^n} \leq x < \frac{c_1}{10} + \frac{c_2}{10^2} + ... + \frac{c_n}{10^n} + \frac{1}{10^n}$. On appelle cette suite la suite des décimales de x. On note $x = 0, c_1c_2c_3...$.
- 23) On part d'une suite $(a_n)_{n\geq 1}$ d'entiers vérifiant : $\forall n\geq 1, a_n\in\{0,1,...,9\}$. On pose alors : $\forall n\geq 1, y_n=\frac{a_1}{10}+\frac{a_2}{10^2}+...+\frac{a_n}{10^n}$.

$$\forall n \ge 1, y_n = \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n}.$$

- (a) On s'intéresse à la suite $(a_1, a_2, a_3, ...) = (9, 9, 9, ...)$. Montrer que pour tout $n \ge 1$, on a $y_n = 1 \frac{1}{10^n}$. En déduire que y_n converge vers 1.
- (b) Plus généralement, on suppose que p est un entier non nul tel que $a_1 = a_2 = ... = a_{p-1} = 0$ et que $a_n = 9$ à partir de n = p. Montrer que pour tout $n \ge 1$, $y_n < 10^{p-1}$ et que $\lim_{n \to +\infty} y_n = 10^{p-1}$.
- (c) On part d'une suite de décimales $(a_n)_{n\geq 1}$ quelconque. Montrer que la suite $(y_n)_n$ est croissante et majorée, avec une limite $x \in [0, 1]$.
- (d) [Plus délicat...] On conserve les notations du (c). Montrer que si la suite de départ (a_n) ne vaut pas 9, 9, 9, ... à partir d'un certain rang, alors $x \in [0, 1]$ et les a_n sont égales aux décimales c_n de x définies à

$$x = \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_{p-1}}{10^{p-1}} + \frac{a_p + 1}{10^p} = 0, a_1 a_2 \dots a_{p-1} (a_p + 1)000 \dots$$

l'exercice 21. Si on a un rang $p \ge 1$ tel que $a_p < 9$ et $a_{p+1} = a_{p+2} = \dots = 9$, alors : $x = \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_{p-1}}{10^{p-1}} + \frac{a_p + 1}{10^p} = 0, a_1 a_2 \dots a_{p-1} (a_p + 1)000 \dots,$ et les décimales de x sont en fait : $c_1 = a_1, c_2 = a_2, \dots, c_{p-1} = a_{p-1}, c_p = a_p + 1$ et $c_{p+1} = c_{p+2} = \dots = 0$. Un tel nombre est appelé décimal.

- (e) Expliquer comment on peut définir la représentation décimale d'un réel x quelconque (pas forcément dans [0, 1]), et quelles suites de décimales correspondent à un réel.
- 24) [aïe aïe aïe ...!] Justifier les assertions suivantes (elles sont vraies, c'est promis!)
- (a) Un réel est un nombre rationnel si et seulement si sa représentation décimale est périodique à partir d'un certain rang (en désignant par c_1, c_2, c_3, \dots les décimales "après la virgule", cela signifie qu'il existe un rang $p \geq 1$, et une séquence finie $s_1, s_2, ..., s_N$, telle que :

$$c_p, c_{p+1}, c_{p+2}, \dots$$

soit en fait la suite

$$s_1, s_2, ..., s_N, s_1, s_2, ..., s_N, s_1, s_2, ..., s_N, s_1, ...$$

qui se répète indéfiniment).

- (b) Il existe une suite $(u_n)_{n\in\mathbb{N}}$ telle que l'ensemble des termes $\{u_0,u_1,...,u_n,...\}$ soit l'ensemble \mathbb{Q} .
- (c) Il n'existe pas de suite $(u_n)_{n\in\mathbb{N}}$ telle que l'ensemble des termes $\{u_0,u_1,...,u_n,...\}$ soit l'ensemble \mathbb{R} .